A polynomial expansion to approximate the ultimate ruin probability in the compound Poisson ruin model

نویسندگان

  • Pierre-Olivier Goffard
  • Stéphane Loisel
  • Denys Pommeret
چکیده

A numerical method to approximate ruin probabilities is proposed within the frame of a compound Poisson ruin model. The defective density function associated to the ruin probability is projected in an orthogonal polynomial system. These polynomials are orthogonal with respect to a probability measure that belongs to Natural Exponential Family with Quadratic Variance Function (NEF-QVF). The method is convenient in at least four ways. Firstly, it leads to a simple analytical expression of the ultimate ruin probability. Secondly, the implementation does not require strong computer skills. Thirdly, our approximation method does not necessitate any preliminary discretisation step of the claim sizes distribution. Finally, the coefficients of our formula do not depend on initial reserves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Finite-time Ruin Probability of the Compound Poisson Model with Constant Interest Force

In this paper, we establish a simple asymptotic formula for the finite-time ruin probability of the compound Poisson model with constant interest force and subexponential claims in the case that the initial surplus is large. The formula is consistent with known results for the ultimate ruin probability and, in particular, is uniform for all time horizons when the claim size distribution is regu...

متن کامل

The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber-Shiu Discounted Penalty Function

We modify the compound Poisson surplus model for an insurer by including liquid reserves and interest on the surplus. When the surplus of an insurer is below a fixed level, the surplus is kept as liquid reserves, which do not earn interest. When the surplus attains the level, the excess of the surplus over the level will receive interest at a constant rate. If the level goes to infinity, the mo...

متن کامل

Taylor-series Expansion for Multivariate Characteristics of Classical Risk Processes

For the continuous-time risk model with compound Poisson input, the ((nite-horizont) joint probability P (t; X x; Y y) of ruin time , surplus X just before ruin and deecit Y at ruin time is considered as a function of the arrival rate of claims. It is expanded into a Taylor series at = 0. A certain extension of a corresponding result for innnite-horizont joint probabilities, which previously ha...

متن کامل

A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Ruin Probability in Compound Poisson Process with Investment

We consider that the surplus of an insurer follows compound Poisson process and the insurer would invest its surplus in risky assets, whose prices satisfy the Black-Scholes model. In the risk process, we decompose the ruin probability into the sum of two ruin probabilities which are caused by the claim and the oscillation, respectively. We derive the integro-differential equations for these rui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 296  شماره 

صفحات  -

تاریخ انتشار 2016